

Series RP5PS/5

प्रश्न-पत्र कोड 56/5/2

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-⊀ पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से
 पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक
 अवश्य लिखें।
- ☼ (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्र में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

- (I) Please check that this question paper contains 23 printed pages.
- (II) Please check that this question paper contains **33** questions.
- (III) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (IV) Please write down the serial number of the question in the answer-book before attempting it
- (V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 70

Time allowed : 3 hours

Maximum Marks: 70

56/5/2/22

227 B

1

·····

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए:

- (i) इस प्रश्नपत्र में 33 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्नपत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ**।
- (iii) **खण्ड क -** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) **खण्ड ख -** प्रश्न संख्या 17 से 21 तक अति लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है।
- (v) **खण्ड ग -** प्रश्न संख्या 22 से 28 तक लघु उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है।
- (vi) **खण्ड घ -** प्रश्न संख्या **29** तथा **30** केस आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है।
- (viii) प्रश्नपत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्नपत्र है।
- (x) कैलकुलेटर का उपयोग वर्जित है।

खण्ड – क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. निम्नलिखित में से कौन-सी स्पीशीज़ प्रबलतम क्षार की तरह कार्य कर सकती है ?
 - (A) OH⁻

(B) $C_6H_5O^-$

(C) RO

(D) $\sqrt{\sum_{O_2N}} O^-$

56/5/2/22

GENERAL INSTRUCTIONS:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) Question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) Section A question number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** question number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) Section C question number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) **Section D** question number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** question number **31** to **33** are long answer type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculator is NOT allowed.

SECTION - A

Question No. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1 = 16$

- 1. Which of the following species can act as the strongest base?
 - (A) OH⁻

(B) $C_6H_5O^-$

(C) RO

(D) $\sim \sim 0^{-1}$


2 .	वायु उ	और प्रकाश में क्लोरोफॉर्म के स्वःऑक्सीकर	ग द्वारा	उत्पादित विषैली गैस है
	(A)	फ़ॉस्फीन	(B)	मस्टर्ड गैस
	(C)	फ़ॉस्जीन	(D)	अश्रु (टियर) गैस
3.	समपर	ासरी विलयनों का होता है समान		
	(A)	घनत्व		
	(B)	अपवर्तनांक		
	(C)	परासरण दाब		
	(D)	आयतन		
4.	किसी	प्रोटीन में वह विशिष्ट क्रम जिसमें ऐमीनो अग	न्त व्यव	प्रस्थित होते हैं, कहलाती है
	(A)	प्राथमिक संरचना		
	(B)	द्वितीयक संरचना		
	(C)	तृतीयक संरचना		
	(D)	चतुष्क संरचना		
5.	संक्रम	ण धातुएँ अंतराकाशी यौगिक बनाने के लिए	ए भलीभ	गाँति जाने जाते हैं । अंतराकाशी यौगिकों के बनने
	से संब्र	ьमण धातुएँ हो जाती हैं		
	(A)	अधिक कठोर		
	(B)	अधिक कोमल		
	(C)	अधिक तन्य		
	(D)	अधिक धात्विक		

56/5/2/22

	A ,			
2.		o-oxidation of chloroform in a wn as	ır an	d light produces a poisonous gas
	KIIOV	wii as		
	(A)	Phosphine	(B)	Mustard gas
	(C)	Phosgene	(D)	Tear gas
3.	Isoto	onic solutions have the same		
	(A)	density		
	(B)	refractive index		
	(C)	osmotic pressure		
	(D)	volume		
4.	The	specific sequence in which an	nino a	acids are arranged in a protein is
	calle	ed its		
	(A)	Primary structure		
	(B)	Secondary structure		
	(C)	Tertiary structure		
	(D)	Quaternary structure		
5.	Trar	nsition metals are known to m	ake i	interstitial compounds. Formation
	of in	terstitial compounds makes the	e trar	nsition metal
	(A)	more hard	(B)	more soft
	(C)	more ductile	(D)	more metallic

5

P.T.O.

56/5/2/22

6. दी हुई अभिक्रिया का सही नाम है :

$$Ar - N_2^+ X^-$$
 $\xrightarrow{HBr} Ar - Br + N_2$

- (A) हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया
- (B) ग्रैब्रिएल थैलिमाइड संश्लेषण
- (C) कार्बिल ऐमीन अभिक्रिया
- (D) गाटरमान अभिक्रिया
- 7. विशा ने चार परखनितयाँ A, B, C और D लेकर उनमें क्रमशः $CH_3CH = CH_2$, $CH_3CH_2CH = CH_2$, $CH_3CH = CH CH_3$ और $(CH_3)_2C = CH_2$ लिया और उनका तृतीयक ब्यूटिल एल्कोहॉल में रूपान्तरण करने का प्रयत्न किया । उसने प्रत्येक ऐल्कीन पर अम्ल उत्प्रेरित जलयोजन अभिक्रिया की । चार परखनितयों में से वांछित परिणाम देने वाली परखनली है
 - (A) A

(B) B

(C) C

- (D) D
- 8. KCl विलयन के लिए वॉण्ट हॉफ कारक यह मानते हुए कि यह पूर्णतः वियोजित है, हैं
 - (A) 1

(B) 2

(C) 0.5

- (D) 1.5
- 9. तनुकरण मोलर चालकता एवं चालकता दोनों को प्रभावित करता है। दोनों पर तनुकरण का प्रभाव है:
 - (A) तनुता के साथ मोलर चालकता घटती है जबिक चालकता बढ़ती है।
 - (B) तनुता के साथ मोलर चालकता बढ़ती है जबिक चालकता घटती है।
 - (C) तनुता के साथ दोनों घटते हैं।
 - (D) तन्ता के साथ दोनों बढ़ते हैं।

56/5/2/22

6. The correct name of the given reaction is

$$Ar - N_2^+ X^- \xrightarrow{HBr} Ar - Br + N_2.$$

- (A) Hoffmann Bromamide degradation reaction.
- (B) Gabriel Phthalimide synthesis
- (C) Carbyl amine reaction
- (D) Gatterman reaction
- 7. Visha took 4 test-tubes namely A, B, C & D containing $CH_3CH = CH_2$, $CH_3CH_2CH = CH_2$, $CH_3CH = CH CH_3$ and $(CH_3)_2C = CH_2$ respectively and tried to convert them into tertbutylalcohol. She carried out acid catalysed hydration reaction on every alkene. Out of the four test-tubes, the one which will give desired result is
 - (A) A

(B) B

(C) C

- (D) D
- 8. Van't Hoff factor for KCl solution assuming the complete dissociation is
 - (A) 1

(B) 2

(C) 0.5

- (D) 1.5
- 9. Dilution affects both molar conductivity as well as conductivity. Effect of dilution on both is
 - (A) molar conductivity decreases whereas conductivity increases on dilution.
 - (B) molar conductivity increases whereas conductivity decreases on dilution.
 - (C) both decrease with dilution.
 - (D) both increase with dilution.

56/5/2/22

7

P.T.O.

10. इन्वर्टर (प्रतीपक) में कौन सा सेल प्रयुक्त होता है ?

(A) ईंधन सेल

(B) मर्क्यूरी सेल

(C) लेड संचायक सेल

(D) शुष्क सेल

11. निम्न अणुओं में से किसमें तारक से चिद्धित C-परमाणु काइरल है ?

(I)
$$H_{3}C \xrightarrow{CH_{3}} H$$

(II) H₃C Br

(III)
$$CH_3CH_2$$
 CH_3CH_3

(IV) H_3CCH_2 $\begin{array}{c}
CH_3 \\
C'_{n_{n_{n_1}}} \\
D
\end{array}$

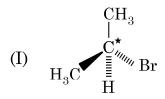
(A) I, II, III

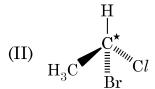
(B) II, III, IV

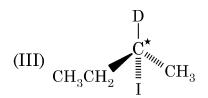
(C) I, II, III, IV

(D) I, III, IV

12. अभिक्रिया $A + 2B \rightarrow C + D$ के लिए अभिक्रिया की कोटि है :


- (A) A के प्रति 1
- (B) B के प्रति 2
- (C) प्रागुक्ति नहीं की जा सकती क्योंकि अभिक्रिया कोटि प्रयोगात्मक रूप से निर्धारित की गई है।
- (D) 3


56/5/2/22



- 10. Which of the following cell is used in inverter?
 - (A) Fuel cell

- (B) Mercury cell
- (C) Lead storage cell
- (D) Dry cell
- 11. In which of the following molecules, C atom marked with asterisk is chiral?

(IV) H_3CCH_2 $C^{\star}_{n_{n_n}}$ D

(A) I, II, III

(B) II, III, IV

(C) I, II, III, IV

- (D) I, III, IV
- 12. For the reaction $A + 2B \rightarrow C + D$. The order of the reaction is
 - (A) 1 with respect to A
 - (B) 2 with respect to B
 - (C) can't be predicted as order is determined experimentally.
 - (D) 3

56/5/2/22

9

P.T.O.

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं - जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडो (A), (B), (C) और (D) में से चुनकर दीजिए:

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- अभिकथन (A) : p-नाइट्रोफ़ीनॉल की तुलना में p-मेथॉक्सीफ़ीनॉल प्रबलतर अम्ल है। 13.
 - : मेथॉक्सी समूह +I प्रभाव दर्शाता है जबिक नाइट्रो समूह –I प्रभाव दर्शाता है। कारण (R)
- 14. अभिकथन (A) : S_N^2 अभिक्रिया में विन्यास का प्रतिलोमन प्रेक्षित होता है।
 - : अभिक्रिया कार्बोंकैटायन के निर्माण के साथ अग्रसर होती है। कारण (R)
- 15. अभिकथन (A) : किसी शून्य कोटि की अभिक्रिया के लिए वेग स्थिरांक और अभिक्रिया वेग की इकाइयाँ समान होती हैं।
 - : शून्य कोटि की अभिक्रिया में, अभिक्रिया वेग अभिक्रियाओं की सांद्रता पर निर्भर कारण (R) नहीं करता है।

56/5/2/22 10

For questions number 13 to 16, two statements are given one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. **Assertion (A)**: p-methoxyphenol is a stronger acid than p-nitrophenol.
 - Reason (R) : Methoxy group shows +I effect whereas nitro group shows -I effect.
- 14. **Assertion (A):** Inversion of configuration is observed in S_N^2 reaction.
 - **Reason (R)**: The reaction proceeds with the formation of carbocation.
- 15. **Assertion (A):** The units of rate constant of a zero order reaction and rate of reaction are the same.
 - Reason (R): In zero order reaction, the rate of reaction is independent of the concentration of reactants.

16. अभिकथन (A) : ${
m Zr}$ और ${
m Hf}$ की लगभग समान परमाणु त्रिज्याएँ हैं।

कारण (R) : यह लैन्थेनॉयड आकुंचन के कारण है।

खण्ड – ख

17.	निम्ना	लिखित	पदों को परिभाषित कीजिए :	2
	(a)		का वैद्युतअपघटन का द्वितीय नियम	
	(b)	संक्षार	<u> </u>	
18.	प्रतिर	धि 0.0	L^{-1} $ ext{KC}l$ विलयन से भरे हुए एक चालकता सेल का प्रतिरोध $200~\Omega$ है। यदि उसी सेल का $10.05~ ext{mol}$ $10.05~ ext{mol}$ $10.05~ ext{mol}$ $10.05~ ext{mol}$ विलयन की वं मोलर चालकता परिकलित कीजिए। $10.05~ ext{mol}$ $10.05~ ext{mol}$ विलयन की चालकता	
			cm^{-1} 青	2
19.			प्रथम कोटि की अभिक्रिया में 99% अभिक्रिया पूर्ण होने में लगा समय 90% अभिक्रिया पूर्ण वाले समय से दुगुना होता है। (log 10 = 1)	2
20.	(a)	निम्न	रूपान्तरण सम्पन्न कीजिए :	
		(i)	नाइट्रोबेन्जीन से ऐनिलीन	1
		(ii)	ऐनिलीन से फ़ीनॉल	1
			अथवा	
	(b)	(i)	डाइमेथिल ऐमीन और ऐथेनेमीन में विभेद करने के लिए रासायनिक परीक्षण लिखिए।	1
		(ii)	बेन्जीन डाइएज़ोनियम क्लोराइड को KI के साथ अभिकृत किए जाने पर निर्मित उत्पाद लिखिए।	1
21.	_		शर्कराओं को मोनोसैकैराइड और डाइसैकैराइड में वर्गीकृत कीजिए :	
	फ्रक्ट	ोज़, लैब	स्टोज़, ग्लूकोज़, माल्टोज़	2
56/5	5/2/22	2	12	

16. Assertion (A): Zr and Hf are of almost similar atomic radii.

Reason (R): This is due to Lanthanoid contraction.

SECTION - B

17.	Defi	ne th	e following terms:	2
	(a)	Fara	aday's second law of electrolysis	
	(b)	Corr	rosion	
18.	200 solu 0.05	Ω. If tion :	the resistance of the same cell when filled with 0.2 mol L^{-1} KC l solution is the resistance of the same cell when filled with 0.05 mol L^{-1} KC l is 620 Ω , calculate the conductivity and molar conductivity of L^{-1} KC l solution. The conductivity of 0.2 mol L^{-1} KC l solution is cm ⁻¹ .	2
19.	of 9	9% r	at in case of a first order reaction, the time taken for completion eaction is twice the time required for 90% completion of the $(\log 10 = 1)$	2
20.	(a)	Carı	ry out the following conversions:	
		(i)	Nitrobenzene to Aniline	1
		(ii)	Aniline to Phenol	1
			OR	
	(b)	(i)	Write a chemical test to distinguish between Dimethyl amine and Ethanamine.	1
		(ii)	Write the product formed when benzene diazonium chloride is treated with KI.	1
21.	Clas	sify t	the following sugars into monosaccharides and disaccharides:	2
	Fruc	ctose,	Lactose, Glucose, Maltose	
56/5	/2/22		13 ••••••••••••• P.T	. O.

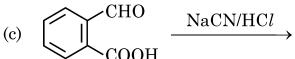
खण्ड - ग

22. निम्नलिखित अभिक्रियाओं से अपेक्षित मुख्य उत्पाद की संरचना दीजिए :

 1×3

3

- (a) ऐथेनैल की मेथिल मैग्नीशियम ब्रोमाइड के साथ अभिक्रिया तदुपरान्त जलअपघटन।
- (b) तनु सल्फ्यूरिक अम्ल की उपस्थिति में ब्यूट-1-ईन का जलयोजन ।
- (c) फ़ीनॉल की ब्रोमीन जल के साथ अभिक्रिया।
- C_3H_9N आण्विक सूत्र वाले किसी यौगिक 'X' ने $C_6H_5SO_2Cl$ के साथ अभिक्रिया करके एक क्षार में अविलेय ठोस दिया । 'X' की पहचान कीजिए और उत्पाद का आई यू पी ए सी नाम दीजिए । संबद्ध अभिक्रिया लिखिए ।
- 24. ताप में $300~\mathrm{K}$ से $320~\mathrm{K}$ तक वृद्धि करने पर किसी अभिक्रिया का वेग स्थिरांक चार गुना हो जाता है। इस अभिक्रिया के लिए सक्रियण ऊर्जा की गणना कीजिए। $[\log 2 = 0.30, \log 4 = 0.60, 2.303~\mathrm{R} = 19.15~\mathrm{J}~\mathrm{K}^{-1}\mathrm{mol}^{-1}]$
- 25. निम्नलिखित उपसहसंयोजन यौगिकों के आई यू पी ए सी नाम लिखिए (कोई तीन):
 - (a) $K_3[Fe(CN)_6]$
 - (b) $[Pt(en)_2Cl_2]^{2+}$
 - (c) $[Co(NH_3)_4Cl(ONO)]Cl$
 - (d) $[Zn(OH)_4]^{2-}$


 1×3

 1×3

26. निम्नलिखित प्रत्येक अभिक्रिया के मुख्य उत्पादों की संरचना बनाइए :

(a) $(Ag(NH_3)_2]^+OH^ (Ag(NH_3)_2]^+OH^-$

(b) CH_3 C = C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

56/5/2/22

SECTION - C

- 22. Give the structure of the major product expected from the following reactions: 1×3
 - (a) Reaction of Ethanal with methyl-magnesium bromide followed by hydrolysis.
 - (b) Hydration of But-1-ene in the presence of dilute sulphuric acid.
 - (c) Reaction of phenol with bromine water.
- 23. A compound 'X' with molecular formula C_3H_9N reacts with $C_6H_5SO_2Cl$ to give a solid, insoluble in alkali. Identify 'X' and give the IUPAC name of the product. Write the reaction involved.
- 24. The rate constant of a reaction quadruples when the temperature changes from 300 K to 320 K. Calculate the activation energy for this reaction. [log 2 = 0.30, log 4 = 0.60, 2.303 R = 19.15 J K⁻¹mol⁻¹]
- 25. Write IUPAC names of the following coordination compounds: (any three)
 - (a) $K_3[Fe(CN)_6]$
 - (b) $[Pt(en)_2Cl_2]^{2+}$
 - (c) $[Co(NH_3)_4Cl(ONO)]Cl$
 - (d) $[Zn(OH)_4]^{2-}$ 1 × 3
- 26. Draw the structures of major product(s) in each of the following reactions:

(a)
$$\begin{array}{c} O \\ & & \\ &$$

56/5/2/22 15 P.T.O.

3

 1×3

27. निम्नलिखित सेल के ${
m emf}$ का परिकलन कीजिए :

3

$$Ni(s) + 2Ag^{+}(0.01 \text{ M}) \longrightarrow Ni^{2+}(0.1 \text{ M}) + 2Ag(s)$$

दिया गया है $E_{\text{then}}^{\circ} = 1.05 \text{ V}, \log 10 = 1$

28. निम्नलिखित के लिए कारण दीजिए:

 1×3

- (a) हैलोऐल्केन, NaCN के साथ अभिक्रिया करके सायनाइड और आइसोसायनाइड दोनों निर्मित करते हैं।
- (b) हैलोऐरीन आसानी से नाभिकरागी प्रतिस्थापन अभिक्रिया नहीं करते।
- (c) $\,$ बेन्जिल क्लोराइड ${\rm S}_{\rm N} 1$ अभिक्रिया करता है ।

खण्ड – घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

29. ऐसा देखा गया है कि हमारे भोजन में कुछ कार्बनिक यौगिकों की आवश्यकता सूक्ष्म मात्रा में होती है परंतु उनकी कमी के कारण विशेष रोग हो जाते हैं। इन यौगिकों को विटामिन कहते हैं। अधिकांश विटामिनों का संश्लेषण हमारे शरीर द्वारा नहीं किया जा सकता लेकिन पौधे लगभग सभी विटामिनों का संश्लेषण कर सकते हैं, अतः इन्हें आवश्यक आहार कारक माना गया है। यद्यपि आहारनली के बैक्टीरिया हमारे लिए आवश्यक कुछ विटामिनों को उत्पन्न कर सकते हैं। सामान्यतः हमारे आहार में सभी विटामिन उपलब्ध रहते हैं। विटामिन (Vitamine) दो शब्दों – विटल (vital) + एमीन (amine) से जुड़कर बना है, क्योंकि प्रारम्भ में पहचाने गए यौगिकों में ऐमीनो समूह था। जल तथा वसा में विलेयता के आधार पर विटामिनों को दो समूहों में वर्गीकृत किया गया है – वसा विलेय विटामिन तथा जल में विलेय विटामिन।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

(a) विटामिन ${\bf B}_6$ का दूसरा नाम क्या है ?

1

1

2

- (b) उस विटामिन का नाम बताइए जिसकी कमी से रक्त के थक्का जमने के समय में वृद्धि हो जाती है।
- (c) ज़िॲरोफ्थैल्मिया किस विटामिन की कमी से हो जाता है ? इस विटामिन के दो स्रोत लिखिए। 2

अथवा

(c) हमारे शरीर में विटामिन C को संचित क्यों नहीं किया जा सकता है ? इस विटामिन की कमी से होने वाले रोग का नाम बताइए।

56/5/2/22

27. Calculate the emf of the following cell:

 $Ni(s) + 2Ag^{+}(0.01 M) \longrightarrow Ni^{2+}(0.1 M) + 2Ag(s)$

Given that $E_{cell}^{\circ} = 1.05 \text{ V}$, $\log 10 = 1$

28. Account for the following:

 1×3

- (a) Haloalkanes react with NaCN to form both cyanides and isocyanides.
- (b) Haloarenes do not undergo nucleophilic substitution reaction easily.
- (c) Benzyl chloride gives $S_N 1$ reaction.

SECTION - D

The following questions are case-based questions. Read the case carefully and answer the questions that follow:

29. Certain organic compounds are required in small amounts in our diet but their deficiency causes specific disease. These compounds are called vitamins. Most of the vitamins cannot be synthesized in our body but plants can synthesize almost all of them. So they are considered as essential food factors. However, the bacteria of the gut can produce some of the vitamins required by us. All the vitamins are generally available in our diet. The term 'vitamin' was coined from the words vital + amine, since the earlier identified compounds had amino group. Vitamins are classified into two groups depending upon their solubility in water or fat namely-fat soluble vitamins and water soluble vitamins.

Answer the following questions:

(a) What is the other name of vitamin B_6 ?

1 1

- (b) Name the vitamin whose deficiency causes increased blood clotting time.
- (c) Xerophthalmia is caused by the deficiency of which vitamin? Give two sources of this vitamin.

2

2

OR

(c) Why can't vitamin C be stored in our body? Name the disease caused by the deficiency of this vitamin.

56/5/2/22

17

P.T.O.

20. एक संकुल में केंद्रीय परमाणु से जुड़े सभी लिगण्डों को यदि उनके साझे के इलेक्ट्रॉन युगलों सिहत हटा लिया जाए तो केन्द्रीय परमाणु पर उपस्थित आवेश को उसकी ऑक्सीकरण संख्या कहते हैं। इसी प्रकार संकुल पर आवेश उसके घटक भागों पर आवेश के योग के बराबर होता है, अर्थात् केंद्रीय धातु आयन पर आवेश और उसको घेरे हुए लिगण्डों के आवेश के योग के बराबर होता है। इस पर आधारित, यदि घटकों के आवेश का योग शून्य हो तो संकुल को उदासीन कहते हैं। तथापि, धनायनिक अथवा ऋणायनिक संकुल के लिए, घटकों के आवेश का योग समन्वय मंडल पर आवेश के बराबर होता है।

उपरोक्त सूचना पर आधारित निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) उभयदंती लिगण्ड को एक उदाहरण देते हुए परिभाषित कीजिए।
- (b) $[\text{Co(NH}_3)_5\text{C}l]\text{SO}_4$ और $[\text{Co(NH}_3)_5\text{SO}_4]\text{C}l$ के द्वारा किस प्रकार की समावयवता दर्शाई गई है ?
- (c) कीलेट प्रभाव को परिभाषित कीजिए। यह संकुल के स्थायित्व को कैसे प्रभावित करता है ?

अथवा

(c) ${
m Na_3[Cr(C_2O_4)_3]}$ में क्रोमियम की उपसहसंयोजन संख्या एवं ऑक्सीकरण अवस्था ज्ञात कीजिए।

खण्ड – ङ

- 31. (a) एक कार्बनिक यौगिक (A) जिसका अणुसूत्र $C_9H_{10}O$ है 2, 4-DNP व्युत्पन्न बनाता है, फेलिंग विलयन को अपचित करता है तथा कैनिज़ारो अभिक्रिया देता है । प्रबल ऑक्सीकरण पर वह 1, 2-बेन्ज़ीनडाईकार्बोक्सिलिक अम्ल बनाता है ।
 - (i) यौगिक (A) को पहचानिए और इसका IUPAC नाम लिखिए।
 - (ii) यौगिक (A) की अभिक्रिया लिखिए:
 - (1) 2, 4-डाइनाइट्रोफेनिलहाइड्रैजीन के साथ और
 - (2) फेलिंग विलयन के साथ
 - (iii) यौगिक (A) का समीकरण लिखिए जब यह कैनिज़ारो अभिक्रिया देता है। 2+2+1

अथवा

1

1

30. The oxidation number of the central atom in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom. Similarly the charge on the complex is the sum of the charges of the constituent parts i.e. the sum of the charges on the central metal ion and its surrounding ligands. Based on this, the complex is called neutral if the sum of the charges of the constituents is equal to zero. However, for an anion or cationic complex, the sum of the charges of the constituents is equal to the charge on the coordination sphere.

Based on the above information, answer the following questions:

- (a) Define ambidentate ligand with an example.
- (b) What type of isomerism is shown by $[Co(NH_3)_5Cl]SO_4$ and $[Co(NH_3)_5SO_4]Cl$?
- (c) Define Chelate effect. How it affects the stability of complex?

OR

(c) Find the coordination number and oxidation state of chromium in $Na_3[Cr(C_2O_4)_3]$.

SECTION - E

- 31. (a) An organic compound (A) with the molecular formula $\mathrm{C_9H_{10}O}$ forms 2, 4-DNP derivative, reduces Fehling solution and undergoes Cannizzaro reaction. On vigorous oxidation, it gives 1, 2-benzene dicarboxylic acid.
 - (i) Identify the compound (A) and write its IUPAC name.
 - (ii) Write the reaction of compound (A) with
 - (1) 2, 4-Dinitrophenyl hydrazine and
 - (2) Fehling solution
 - (iii) Write the equation of compound (A) when it undergoes Cannizzaro reaction. 2 + 2 + 1

OR

1

निम्नलिखित के कारण दीजिए: (b) (i)

- 1×2
- ऐल्डिहाइडों और कीटोनों के α-हाइड्रोजनों का स्वभाव अम्लीय होता है।
- कीटोनों की अपेक्षा ऐल्डिहाइडों का ऑक्सीकरण आसानी से हो जाता है।
- निम्नलिखित को व्यवस्थित कीजिए : (ii)

 1×2

- प्रोपेनैल, ऐसीटोन और बेन्ज़ैल्डिहाइड को उनकी नाभिकरागी योगज अभिक्रियाओं (1) के प्रति घटती अभिक्रियाशीलता में।
- प्रोपेन, एथेनॉल और डाइमेथिल ईथर, प्रोपेनॉल को उनके क्वथनांकों के बढ़ते क्रम में। (2)
- (iii) बेन्ज़ोइक अम्ल एवं बेन्जैल्डिहाइड में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए। 1
- निम्नलिखित में से किन्हीं पाँच प्रश्नों के उत्तर दीजिए : 32.

 1×5

- Ce(III) आसानी से Ce(IV) में ऑक्सीकृत हो जाता है। टिप्पणी कीजिए। (a)
- $E^{\circ}(Mn^{2+}/Mn) = 1.18 \text{ V}$ है । समीपस्थ d-ब्लॉक तत्त्वों की तुलना में यह मान अत्यन्त (b) ऋणात्मक क्यों है ?
- 3d श्रेणी के किस तत्त्व की कणन एन्थैल्पी न्यूनतम है और क्यों ? (c)
- सोडियम क्रोमेट को अम्लीकृत करने पर क्या होता है ? (d)
- Zn, Cd और Hg कोमल धातुएँ हैं, क्यों ? (e)
- परमैंगनेट अनुमापन $\mathrm{HC}l$ की उपस्थिति में क्यों नहीं किया जाता है ? (f)
- संक्रमण तत्त्वों (धात्ओं) के निम्न ऑक्साइड क्षारकीय होते हैं जबकि उच्च ऑक्साइड (g) उभयधर्मी/अम्लीय होते हैं। कारण दीजिए।

56/5/2/22

20

CLICK HERE

^^^^

(b) (i) Account for the following

 1×2

- (1) The alpha (α)-hydrogens of aldehydes and ketones are acidic in nature.
- (2) Oxidation of aldehydes is easier than ketones.
- (ii) Arrange the following in:

 1×2

- (1) Decreasing reactivity towards nucleophilic addition reaction propanal, acetone, benzaldehyde.
- (2) Increasing order of boiling point :Propane, Ethanol, Dimethylether, Propanal
- (iii) Give simple chemical test to distinguish between Benzoic acid and Benzaldehyde.

32. Attempt any **five** of the following:

 1×5

1

- (a) Ce(III) is easily oxidised to Ce(IV). Comment.
- (b) E°(Mn²⁺/Mn) is −1.18 V. Why is this value highly negative in comparison to neighbouring d block elements?
- (c) Which element of 3d series has lowest enthalpy of atomisation and why?
- (d) What happens when sodium chromate is acidified?
- (e) Zn, Cd and Hg are soft metals. Why?
- (f) Why is permanganate titration not carried out in the presence of HCl?
- (g) The lower oxides of transition metals are basic whereas the highest are amphoteric/acidic. Give reason.

56/5/2/22

21

P.T.O.

- 33.~(a)~(i)~ ईशान के स्वचालित वाहन के रेडिएटर में $1.0~{
 m kg}$ जल भरा है । ईशान इसमें कितने ग्राम एथिलीन ग्लाइकॉल (मोलर द्रव्यमान $=62~{
 m g~mol^{-1}}$) मिलाए तािक विलयन का हिमांक $-2.8~{
 m ^{\circ}C}$ हो जाए । जल के लिए ${
 m K_f}~1.86~{
 m K~kg\cdot mol^{-1}}$ है ।
 - (ii) एथेनॉल एसीटोन मिश्रण द्वारा राउल्ट नियम से किस प्रकार का विचलन दर्शाया जाता है। कारण दीजिए।

अथवा

- (b) (i) $750~{
 m mm}$ Hg दाब पर जल का क्वथनांक $99.68~{
 m °C}$ है । $500~{
 m g}$ जल में कितना सूक्रोस (मोलर द्रव्यमान = $342~{
 m g}$ mol $^{-1}$) मिलाया जाए तािक यह $100~{
 m °C}$ पर क्वथन करें । (जल के लिए ${
 m K_b}=0.52~{
 m K}~{
 m kg}~{
 m mol}^{-1}$)
 - (ii) हेनरी नियम बताइए और इसका कोई एक अनुप्रयोग लिखिए। 3 + 2

56/5/2/22

3

 $\mathbf{2}$

- 33. (a) (i) Ishan's automobile radiator is filled with 1.0 kg of water. How many grams of ethylene glycol (Molar mass = 62 g mol $^{-1}$) must Ishan add to get the freezing point of the solution lowered to -2.8 °C. K_f for water is 1.86 K kg \cdot mol $^{-1}$.
 - (ii) What type of deviation from Raoult's law is shown by ethanol and acetone mixture? Give reason.

OR

- (b) (i) Boiling point of water at 750 mm Hg pressure is 99.68 °C. How much sucrose (Molar mass = 342 g mol⁻¹) is to be added to 500 g of water such that it boils at 100 °C? (K_b for water = 0.52 K kg mol⁻¹).
 - (ii) State Henry's law and write its any one application. 3 + 2

56/5/2/22

3

227 B 56/5/2/22

Get More Learning Materials Here:

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024

SUBJECT NAME CHEMISTRY (Theory) (Q.P.CODE56_5_1,2,3)

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

1 I Page 56 5 2

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks ______ (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

2 I Page 56 5 2

Get More Learning Materials Here:

MARKING SCHEME 2024

CHEMISTRY (Theory) - 043 QP CODE 56/5/2

Q.No	Value points	Mark
	SECTION A	
1	C	1
2	C	1
3	С	1
4	Α	1
5	A	1
6	D	1
7	D	1
8	В	1
9	B	1
10	C	1
11	B	1
12	<u>C</u>	1
13	D	1
14	C	1
15	A OR B	1
16	SECTION B	1
17	(a) The amounts of different substances liberated by the same quantity of electricity passing	1
1/	through the electrolytic solutions are proportional to their chemical equivalent weights.	
	(b) Oxidation of metal to undesirable products when exposed to air and moisture. / Metallic	
	corrosion is loss of metals by a redox process in which metals are oxidized by air and	1
	moisture.	
	Cell constant = G^* = conductivity × resistance= 0.0248 S/cm × 200 ohm = 4.96 cm ⁻¹	1/2
18	Conductivity of 0.05 mol L ⁻¹ KCl solution = cell constant / resistance	
	$=* G/R=4.96/620=0.008 \text{ S cm}^{-1}$	1/2
	Molar conductivity = $\Lambda_{\rm m} = \frac{k \times 1000}{c}$	1/2
	c = 0.008 x 1000 /0.05 = 160 S cm ² mol ⁻¹	1/2
	444	1/2
	$t_1 = \frac{2.303}{100} \log \frac{[A]_0}{[A]_0}$	
19	k [A]	
	Time required for the completion of 99% reaction	
	Time required for the completion of 99% reaction	
	2303	
	$t_{99\%} = \frac{100}{b}$	
	2000	
	$t_{99\%} = \frac{2.303}{1} \times 2$	
	199% - k	1/2
	Time required for the completion of 90% reaction	
	<u> </u>	

	$t_{90\%} = \frac{2303}{k} \log \frac{100}{10}$	
	$t_{90\%} = \frac{2.303}{k} \log 10$	
	$t_{90\%} = \frac{2.303}{k}$	1/2
	$\frac{t_{99\%}}{t_{90\%}} = \frac{\left(\frac{2.303}{k}\right) \times 2}{\frac{2.303}{k}}$	1/2
	$\frac{t_{99}\%}{t_{90\%}} = 2$	
	t _{99%} = 2 x t _{90%}	
20	a) (i) NO ₂ Sn/ HCI	1
	(ii)	
	NH, CI NaNO,+ HCI 273-2784 Dr any other suitable method)	1
	OR	
20	b)(i) On reaction with alc. KOH and chloroform, ethanamine gives foul smelling isocyanide whereas dimethylamine does not. (Or any other suitable test) (ii)	1
	T I	1
	/ iodobenzene	
21	Monosaccharides-glucose, fructose	1/2 , 1/2
	Diasscharides-lactose, maltose	1/2,1/2
	a)CH ₃ CH(OH)CH ₃	1
22	b) CH ₃ CH(OH)CH ₂ CH ₃ c)	1
22	OH	
	Br Br	1
	Br	

23	X=	1
	$H-N-C H_3$ C_2H_5	
	IUPAC name of the product- N-Ethyl-N-methylbenzene sulphonamide	1
	$ \begin{array}{c} $	
		1
24	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$ It is given that, $k_2 = 4k_1$	1
	Therefore, $\log \frac{4k_1}{k_1} = \frac{E_a}{2.303 \times R} \left(\frac{320 - 300}{320 \times 300} \right)$ $\Rightarrow 0.60^{\circ} = \frac{20 \times E_a}{19.15 \times 320 \times 300}$	1
	$\Rightarrow E_a = \frac{0.60 \times 19.15 \times 320 \times 300}{20}$	
	= 55152 J mol ⁻¹ or	
	= 55.152 kJ mol ⁻¹ (Deduct ½ mark for no or incorrect unit)	1
25	a) Potassium hexacyanidoferrate(III) b) Dichloridobis(ethane-1,2- diamine)platinum (IV) ion	1×3
	c) Tetraamminechloridonitrito-O-cobalt (III) chloride d) Tetrahydroxidozincate(II) ion	
	(any three)	
	a) 0 0 0-0-	
26.	Ö-0-	
		1
	b)	
	H CH ₃	
	C=C ONa + CHI3	
	H ₃ C C	
		1/2+1/2

	(c)	1
	ÓН	
	CH—CN	
	'СООН	
27	E ^o _{cell} =1.05 V	
	$E_{\text{cell}} = 1.05 - \frac{0.059}{2} \log \frac{[Ni]^{2+}}{[Ag+]^2}$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$=1.05-0.059/2\log\frac{(0.1)^{2}}{(0.01)^{2}}$	1
	=1.05-0.0825	
	=0.9615 V (Deduct ½ mark for incorrect unit or no unit)	1
20	,	1
28	a) NaCN ionizes to give cyanide ion which is an ambidentate nucleophile, it can donate electrons	1
	either by using carbon or by using nitrogen.	
	b)Due to Resonance, a partial double bond is formedbetween C-X/sp ² hybridization of carbon	
	atom in C—X bond / Instability of phenyl cation.	1
	c)Benzyl carbocation is resonance stabilized.	1
	SECTION D	
29	a) Pyridoxine	1
	b) Vitamin K	1
	c) Vitamin A	1
	Sources-Fish liver oil, carrots. (Any other suitable sources)	1/2 , 1/2
	OR	/2,/2
	c) Water soluble and are readily excreted in urine	
		1+1
20	Scurvy	
30	a) Ligand which has two different donor atoms and either of the two ligates in the complex is	1/2 , 1/2
	called ambidentate ligand. Examples :- NO ₂ / SCN / CN (any one)	
	b) Ionization isomerism	1
	c) When a bi-dentate or polydentate ligand ligates to the metal atom or ion that forms a ring.	1
	More is the chelation more is the stability.	1
	OR	
	c)Coordination number: 6 Oxidation state: +3	1+1
	SECTION E	
31	a) (i)	
-	and the second of the second o	
	CHO	
	CH ₂ CH ₃	
	2 – Ethylbenzaldehyde (A)	1+1
	ii) (1)	
	H.N. HN NO,	
	,)= (.	
	CHO $CH = N. HN NO,$	
	(2,4 - DNP) NO ₂ +H ₂ O	1
	C ₂ H ₅	-
	(2) Aromatic aldehydes do not give fehling'stest, 1 mark to be given if attempted in any way.	1
	12) Aromatic didenyaes do not give reming stest, I mark to be given it attempted in any way.	*

	T	T
	(iii)	1
	CHO Conc.NaOH Cott2H3 CH2CH3	1
	OR	
	b) (i) (1) Electron withdrawing nature of carbonyl group/ Due to resonance stabilization of the conjugate base.	1
	(2) Due to cleavage of C-H bond in aldehydes is easier than C-C bond in ketones.	1
	(ii) (1) propanal> benzaldehyde > Acetone	1
	(2) Propane < dimethyl ether <propanal< ethanol<="" td=""><td>1</td></propanal<>	1
	(iii) Benzoic acid will give brisk effervescence on reacting with sodium bicarbonate whereas benzaldehyde does not. (or any other suitable test)	1
32	a) Ce(IV) ion has more stable configuration (4f ⁰) than Ce(III)ion.	1×5
	b) Due to extra stability of half filled (d ⁵) orbitals in Mn ²⁺	
	c) Zinc, due to completely filled d-orbitals/ weak metallic bonding.	
	d) It gets converted to sodium dichromate / colour changes from yellow to orange / correct	
	equation.	
	e) Due to completely filled d-orbitals / weak metallic bonding	
	f) HCl is oxidized by KMnO ₄ to Cl ₂ .	
	g) Lower oxide of transition metals are ionic & ionic character decreases orcovalent character	
	increasewith increase in oxidation state. (Any five)	
33	a) (i) $\Delta T_f = 2.8^{\circ} C$	
	$\Delta T_f = K_f x w_B / M_B x W_A (kg)$	1
	$2.8 = 1.86 \times w_B / 62 \times 1$	1
	$W_B = (2.8x62)/1.86$	
	w _B = 93.33 g (Deduct ½ mark for incorrect unit or no unit)	1
	(ii) Positive deviation	1
	Interaction between ethanol-ethanol is stronger than ethanol-acetone.	1
	OR	† -
33	b) (i) ΔT _b =100-99.68°C = 0.32°C	
	$\Delta T_b = K_b \times W_B / M_B \times W_A \text{ (kg)}$	1
	$0.32 = 0.52 \times W_B \times 1000 / 342 \times 500$	1
	$W_B = 0.32 \times 342 / 0.52 \times 2 = 105.23 g$ (Deduct ½ mark for incorrect unit or no unit.)	1
	(ii) At a constant temperature, the solubility of a gas in a liquid is directlyproportional to the partial pressure of the gas present above the surface of liquid or solution. / The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution. Application: To increase the solubility of CO_2 in soft drinks and soda water, thebottle is sealed under high pressure. (or any other)	1+1
1		

